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Path algebra computations are required for the solution of numerous prob-

lems of practical interest, see [GMI, [T]. In particular M. Gondran and M.Minoux

list the applications of path algebras to the problems of: vehicle routing, invest-

ment and stock control, dynamic programming with discrete states and discrete

time, network optimization, artificial intelligence and pattern recognition,

labyrinths and mathematical games, encoding and decoding of information, [MI].

pp. 41-42, 75-81. There is an effective way to unify such computations by reduc-

ing them to certain matrix operations over a dioid (S,G,*) where G and A are

the operations of that dioid; see {GMI, pp. 84-102. The following classes of prob-

lems allow that reduction: i) existence (problems of connectivity); ii) enumeration

(elementary paths, multicriteria problems, generation of regular languages); iii)

optimization (paths of maximum capacity, paths with minimum number of arcs,

shortest paths, longest paths, path of maximum reliability, reliability of a net-

work): iv) counting (counting of paths, Markov chains); v) optimization and

post-optimization (problems of k-th path, n-optimal paths), see [G.MI, pp. 91, 94-

102.

Specifically, the above computations are reduced to the evaluation (over the

dioid) of the matrix A' (the all pair path problems) or of the vector A' A b Ithe

single source path problems) where

-A* Ai n - ), A(q+') - A (q) G Aq+ ' , q-0,1,..., A (q+ I -- AtW if qtn-l. (1)

A1AI) = I is the identity matrix, A is an nXn input matrix, b is a fixed coordinate

ve.ctor of dimension n, [GM], sect. 3.2, 3.3. Here and hereafter we assume that all

computations, in particular computing the powers of a matrix, are performed

over the dioid. Then

so A' can be computed as follows,

A'- II@A) ( {I A2 ) (IQA 4 ) x . (I GA2), k r log',n' .
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This requires only k-i matrix additions and 2k-2 matrix multiplications, which

means a total of n2(k-i)(4n-1) operations in the dioid. (We cannot use fast

matrix multiplication algorithms over the dioid.) For many dioids the operation

) is idempotent, that is, a ) a = a for all a E S. In that case
n n w

A*= -- E A"= -- E Cn,r) Ar =--(I @ A) n =--(l A)2'

r-O r-O

(where E denotes a sum in the dioid, C(n,r) = r! / n!(n-r)!, k r log~n I ), so

A* can be computed via repeated squaring of I G A. Therefore we may compute

A* using only k-i matrix multiplications and a single addition of the two

matrices A and 1, that is, using a total of n2(k-I)(2n-I)+n operations in a dioid

with idempotent @. It is easy to parallelize these two known algorithms, which

yields rather efficient parallel scheme for the evaluation of A* where A is a dense

matrix. If A is sparse, then the above ways are relatively less effective for the

sparsity of A is not generally preserved during the computation.

Computing A* K b (the single source path problems), can be reduced to the

k
n successive premultiplications of the vectors N Arb by the matrix A for

rmO

k=,I,...,n-l (and to n-i vector additions in the case where the operation G is

not idempotent in the given dioid), that is, to a total of (2 D(A) - n)(n-I) opera-

tions in the dioid (or of 2 D(A)(n-I) operations in the case of nonidempotent G).

provided that the operations in the dioid are not counted if at least one of tlhe

operands is zero. Here D(A) denotes the number of nonzero entries of A. This

way we exploit Sparsity of A to some extent; note, however, that the above esti-

mates translate into O(n log n) parallel steps and D(A) processors. lere and

hereafter we assume a customary machine model of parallel computation, where

in every parallel step each processor performs at most one operation of the Con-

sidered type; in our case this means at most one operation of the dioid.
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In this paper we will consider the case where the associated graph

G = (V,E) of the input matrix has an s(n)-separator family, s(n) = n', a < 1,

*is sufficiently small. We define an s(n)-separator family of a graph following

Definition 1.1 of IPR], that is, G is said to have an s(n)-separator family if, by

deleting a separator set S of vertices, IS _ s( Vi), we may partition G into

. two disconnected subgraphs with the vertex sets V1 and V2 such that

Vi _ a VI i-1,2, a is a constant, a < 1; furthermore we assume that

such a partition can be recursively extended to each of the two resulting sub-

graphs of G defined by the vertex sets S U Vi, i=1,2, and so on. Then we may

further reduce the computational cost of computing A* and A* ) b using tile

nested dissection algorithms of ILRTI for the sequential computation and of [PR]

for the parallel computation.

It may seem that we need to have a symmetric positive definite matrix A to

apply these algorithms. A is indeed symmetric in the case of paths in graphs;

however, even when we deal with digraphs and nonsymmetric A, we may apply

the extension of the algorithms of (PR] to the nonsymmetric case following [Pl~aJ.

for instance, we may reduce the solution of the matrix equation Ax = b with a

nonsymmetric matrix A to the solution of the matrix equation 11(r,x) T = (b.O)T

whr H = (0? A] orHA ] . Here and hereafter 1, N*TvTO n

denote the identity matrix, the transpose of a matrix NV and of a vector v, the

null matrix and the null vector, respectively. On the other hand, it cal be shown

that the algorithm that we will suggest can be extended to the case of nonsyni-

metric systems Ax = b also, as long as a family of s(m+n)-separators is known

for the associated graph of A.

Another apparent difficulty is that the dioid elements may have no inverses

regarding the operations G and K. That difficulty is, however, resolved due to

............. '...
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the generalized Jordan elimination algorithm, which requires only the operations

(D and K, see (GM], Section 3.4.3. (The algorithm works unless generalized

inverses of some computed values do not exist but this is a relatively weak res-

triction.) We combine that algorithm with computing a recursive factorization of

Section 4 of [PR] for the matrix A0 = PAPT where P is a permutation matrix

obtained in the process of computing that recursive factorization. In [PR] the

recursive factorization of A0 is defined by the following matrix and block-matrix

equations where h=O,I,...,d-1, d=O(log n),

Ah -= Z h J Zh--Ah+I + YhXh h,

X ' h 0 hh
A, h- Y hX hI I o Ah+l 1 0

Ah o 00 A-h1I'~ - 1

Computing over dioids we should replace the inverse IV- of every matrix \V with

its generalized inverse W" and either dispense with the signs - or replace them

with G. Then we would arrive at the following recursive factorization that we

will substantiate below.

Ah Yh Xhl'Ah+ I Zh ( ghXg , (2)

-.al*o I 0 °2+1  [ o

Ah~~ h 0 ~J x ~~o0: "" .0 A , 11-x I

h=0,1,...,d-1. Ve should verify that (2) and (3) indeed define the generalized

inverse of A over the given dioid. To do that, we apply the generalized Jordan

algorithm to the 2X2 block matrices Ah of (2), which have decreasing sizes as h

grows from 0 to d-1. The proof of Theorem 4.3.6, [GM], pp. 108-110, and conse-
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quently of the equations (4.3.1) and of the subsequent equations on p. 16 of [GNM]

are easily extended to the case of block-matrices. These equations for the case

N=2 immediately imply the validity of (2) and (3). (Expand (3) and adjust the

notation of [GM], p. 110.)

It remains to estimate the number of operations in the dioid required in

order to compute A'b using the recursive factorization (2), (3). We proceed simi-

larly to deriving the estimates for the recursive factorization in [PR], noting that

for some auxiliary s(ahn) X s(nhn) block-matrices B, (where

o < I h=kk-1,...,O, k=O(log n)), we need to compute B'v,v being a fixed vec-

tor, B' being defined by (1) where B' and B substitute for A* and A, respectively.

It is easy to extend the assumed property that A(T+) - AW for q > n-I to the

equations B(q+l ) - B(q) for q > s(Oh n)-I for A and B are associated with the

path problems of same kind, having only different sizes n and s(ahn), respectively.

Similarly to [PRI, for the evaluation of B* given B, we apply the cited earlier

algorithms for the dense matrix case. These algorithms require

s2(4s - l ) (1 "og2s1 -1) operations in the dioid where s=s(ohn). Applying parallel-

ization we arrive at the favorable complexity bounds of O(log n log 2s(n)) parallel

steps and I E I + s3(n)/log s(n) processors for computing the recursive factoriza-

tion of A* and O(log n log s(n)) parallel steps and I E I +s 2(n) processors for com-

puting A'b for every b where the recursive factorization of A' is available. Here

JEf denotes the number of edges of the graph associated with the matrix A. This

gives algorithms for both single source path problems (where b is fixed) and all

pair path problem (where we may just perform the evaluation for all the n coor-

dinate vectors b). Comparison of the latter estimates with the estimates for the

cost of the straightforward algorithms for computing A' and A'b, which we

recalled earlier, shows that our extension of the nested dissection algorithm of

[PR] substantially accelerates the solution of both single source and all pair path

. ... .* ... - ' - - '" - ." " " - - - -" - - ' -' - ' - - -- . .
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problem.

The authors thank Sally Goodall for typing this paper.
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